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Abstract. In a large distributed system spanning many administrative
domains such as a Grid, it is desirable to maintain and query dynamic
and timely information about active participants such as services, re-
sources and user communities. However, in such a database system, the
set of information tuples in the universe is partitioned over multiple dis-
tributed nodes, for reasons including autonomy, scalability, availability,
performance and security. This suggests the use of Peer-to-Peer (P2P)
query technology.
In this paper, we develop a messaging, communication and network pro-
tocol model for the Unified Peer-to-Peer Database Framework (UPDF)
and the hyper registry proposed in our prior studies. Our so-called Peer
Database Protocol (PDP) has a number of key properties. It is appli-
cable to any node topology and to multiple P2P response modes. To
support loosely coupled autonomous Internet infrastructures, the model
is connection-oriented and message-oriented. For efficiency, it is stateful
at the protocol level, with a transaction consisting of one or more discrete
message exchanges related to the same query. It allows for low latency,
pipelining, early and/or partial result set retrieval due to synchronous
pull, and result set delivery in one or more variable sized batches. It is
efficient, due to asynchronous push with delivery of multiple results per
batch. It provides resource consumption and flow control on a per query
basis, due to the use of a distinct channel per transaction. It is scal-
able, due to application multiplexing, which allows for very high query
concurrency and very low latency, even in the presence of secure TCP
connections. To encourage interoperability and extensibility it is fully
based on Internet Engineering Task Force (IETF) standards.

1 Introduction

In a large distributed system spanning administrative domains such as a Grid
[1], it is desirable to maintain and query dynamic and timely information about
active participants such as services, resources and user communities. Other ex-
amples are a (worldwide) service discovery infrastructure for a multi-national
organization, a Peer-to-Peer (P2P) file sharing system, the Domain Name Sys-
tem (DNS), the email infrastructure, a monitoring infrastructure for a large-scale
cluster of clusters, or an instant messaging and news service. For example, the
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European DataGrid (EDG) [2–4] is a software infrastructure that ties together
a massive set of globally distributed organizations and computing resources for
data-intensive physics analysis applications, including thousands of network ser-
vices, tens of thousands of CPUs, WAN Gigabit networking as well as Petabytes
of disk and tape storage [5]. An enabling step towards increased Grid software
execution flexibility is the web services vision [2, 6, 7] of distributed computing
where programs are no longer configured with static information. Rather, the
promise is that programs are made more flexible and powerful by querying In-
ternet databases (registries) at runtime in order to discover information and
network attached third-party building blocks. Services can advertise themselves
and related metadata via such databases, enabling the assembly of distributed
higher-level components. In support of this vision we have introduced the Web
Service Discovery Architecture (WSDA) [8] and given motivation and justifica-
tion [9] for the assertion that realistic ubiquitous service and resource discovery
requires a rich general-purpose query language such as XQuery [10] or SQL [11].
Based on WSDA, we introduced the hyper registry [12], which is a centralized
database (node) for discovery of dynamic distributed content.

However, in an Internet discovery database system, the set of information
tuples in the universe is partitioned over multiple distributed nodes (peers),
for reasons including autonomy, scalability, availability, performance and secu-
rity. Consequently, we devised the WSDA based Unified Peer-to-Peer Database
Framework (UPDF) [13, 2], which is unified in the sense that it allows to express
specific applications for a wide range of data types (typed or untyped XML,
any MIME type [14]), node topologies (e.g. ring, tree, graph), query languages
(e.g. XQuery, SQL), query response modes (e.g. Routed, Direct and Referral
Response), neighbor selection policies (in the form of an XQuery), pipelining
characteristics, timeout and other scope options. In this framework, an origi-
nator sends a query to an agent node, which evaluates it, and forwards it to
select neighbor nodes. For reliable loop detection in query routes, a query has an
identifier and a certain life time. To each query, an originator attaches a static
loop timeout and a different transaction identifier, which is a universally unique
identifier (UUID). A node maintains a state table of transaction identifiers and
returns an error when a query is received that has already been seen and has
not yet timed out. In this paper, we develop a messaging model and network
protocol for the UPDF framework and the hyper registry.

The design of a messaging model and network protocol for large distributed
systems strongly influences system properties such as scalability, efficiency, inter-
operability, extensibility, reliability, and, of course, limitations in applicability.
For example, the success of many applications depends on how fast they can
start producing initial/relevant portions of the query result set rather than how
fast the entire result set is produced [15]. This is particularly often the case in
distributed systems where many nodes are involved in query processing, each
of which may be unresponsive for many reasons. The situation is even more
pronounced in systems with loosely coupled autonomous nodes. If the messag-
ing model does not support pipelining, a result set has to be delivered with
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long latency in a single large batch, even though the query type might allow for
pipelining. The key problems are:

– What messaging and communication model as well as network protocol uni-
formly supports P2P database queries for a wide range of database archi-
tectures and response models such that the stringent demands of ubiquitous
Internet discovery infrastructures in terms of scalability, efficiency, interop-
erability, extensibility and reliability can be met?

– In particular, how can one allow for high concurrency, low latency as well
as early and/or partial result set retrieval? How can one encourage resource
consumption and flow control on a per query basis?

In this paper, these problems are addressed by developing a unified mes-
saging, communication and network protocol model, collectively termed Peer
Database Protocol (PDP). PDP can be mapped in a straightforward manner
to several concrete messaging models and network protocols, one of which we
explain in detail. Any client (e.g. an originator or a node) can use PDP to
query a node, and to retrieve the corresponding result set. While the use of
PDP for communication between nodes is mandatory to achieve interoperabil-
ity, any arbitrary additional protocol and interface may be used for communi-
cation between an originator and a node (e.g. a simple stateless SOAP/HTTP
request-response or shared memory protocol). For flexibility and simplicity, and
to allow for gatewaying, mediation and protocol translation, the relationship be-
tween an originator and a node may take any arbitrary form, and is therefore
left unspecified.

This paper is organized as follows. Section 2 proposes an abstract messag-
ing model that employs four request messages (QUERY, RECEIVE, INVITE,
CLOSE) and a response message (SEND). The semantics of these messages are
specified in detail. The notion of a transaction as a sequence of one or more
message exchanges between two peers (nodes) is explained. We specify the state
transitions related to message handling. Section 3 maps in a straightforward
manner the abstract PDP messaging model down to the concrete messaging
model of the BEEP [16, 17] application level network protocol framework. The
permitted kinds of message exchanges are detailed. Message types and their pa-
rameters are mapped to XML representations. Section 4 describes how PDP uses
the BEEP communication model to carry a message from one peer to another.
We explain how to efficiently map sessions and channels to TCP connections.
The BEEP network protocol is used in specifying how to handle asynchrony,
encoding, framing, authentication, privacy and reporting. Section 5 compares
our approach with related work. Finally, Section 6 summarizes and concludes
this paper. We also outline interesting directions for future research.

2 Abstract PDP Messaging Model

The abstract PDP messaging model employs four request messages (QUERY,
RECEIVE, INVITE, CLOSE) and a response message (SEND). A transaction
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is a sequence of one or more message exchanges between two peers (nodes) for a
given query. An example transaction is a QUERY-RECEIVE-SEND-RECEIVE-
SEND-CLOSE sequence1. This non-trivial transaction model is in contrast to a
simpler model where a transaction consists of a single request-response exchange
(e.g. HTTP). The former model is stateful whereas the latter is stateless. A peer
can concurrently handle multiple independent transactions. The messages have
the following semantics:

– QUERY. A QUERY message is forwarded along node hops through the
P2P node topology. The message contains the query itself as well as a trans-
action identifier. The QUERY message also contains scope hints such as a
loop timeout, abort timeout, radius and a neighbor selection query [13, 2]. It
may optionally also contain a hint indicating what response mode should be
used (Routed Response or Direct Response [13, 2]). Under Direct Response,
also the service link or description of the agent node must be included,
so that nodes with matches can invite the agent to retrieve the result set.
Optionally, the identity of the originator may be included to allow for au-
thorization decisions where applicable. A node accepting a QUERY message
returns immediately without any results. Results are explicitly requested via
a subsequent RECEIVE message.

– RECEIVE. A RECEIVE message is used by a client to request query
results from another node. It requests the node to SEND a batch of at
least N and at most M results from the (remainder of the) result set. This
corresponds to the next() method of an iterator (operator). We have 1 ≤
N ≤ M. For example, a low latency use case can use N=1, M=10 to indicate
that at least one and at most ten results should be delivered by the next
batch. N=M=infinity indicates that all remaining results should be send in
a single large batch.
A client can successively issue multiple RECEIVE messages until the result
set is exhausted. A client need not retrieve all results from the entire result
set. For example, after the first batch of 10 results it may issue a CLOSE
request.
A RECEIVE request contains a parameter that asks to deliver SEND mes-
sages in either synchronous (pull) or asynchronous (push) mode. In syn-
chronous mode a single RECEIVE request must precede every single SEND
response. An example sequence is RECEIVE-SEND-RECEIVE-SEND. In
asynchronous mode a single RECEIVE request asks for a sequence of suc-
cessive SEND responses. A client need not explicitly request more results,
as they are automatically pushed in a sequence of zero or more SENDs. An
example sequence is RECEIVE-SEND-SEND-SEND.

– SEND. When a node accepts a RECEIVE message, it responds with a
SEND message, containing a batch with P results from the (remainder of

1 This notion is entirely unrelated to the notion used in database systems where a
transaction is an atomic unit of database access which is either completely executed
or not executed at all [18].
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the) result set. We have P ≤ M. We may, but need not, have N ≤ P. For
example, less than N results may be delivered when the entire query result
set is exhausted, or if the node decides to override and decrease N for reasons
including resource consumption control.
A SEND message also contains the number R of remaining results cur-
rently available for immediate non-blocking delivery with the next SENDs
(nonBlockingResultsAvailable). Usually R is greater than zero. R=0 can
indicate that remote nodes have not yet delivered results necessary to return
more than zero results with the next SEND. R=-1 indicates that the batch
contains the last results as the result set is exhausted. No more RECEIVE
messages must be issued after that point. R=-2 indicates that the number is
unknown.
A SEND message also contains the current estimate Q of the remaining total
result set size, irrespective of blocking (estimatedResultsAvailable). The
actual number of results that can (later) be delivered may be larger. It should
not be smaller, except if other nodes fail to deliver their suggested results.
Usually Q is greater or equal to zero. R=-1 implies Q=-1, indicating that the
result set is definitely exhausted. Q=-2 indicates that the number is unknown.

– CLOSE. A client may issue a CLOSE message to inform a node that the
remaining results (if any) are no longer needed and can safely be discarded.
A CLOSE message responds immediately with an acknowledgement. At the
same time, the node asynchronously forwards the CLOSE to neighbors in-
volved in result set delivery, which in turn forward the CLOSE to their
neighbors, and so on. Being informed of a CLOSE allows a node to release
resources as early as possible. Strictly speaking, a client need not issue a
CLOSE, and a node need not forward further a CLOSE, because a query
eventually times out anyway. Even though this is considered misbehavior, a
node must continue to operate reliably under such conditions.

– INVITE. INVITE messages only apply to Direct Response mode [2, 13].
A node forwards the query to the nodes obtained from neighbor selection
without ever waiting for their result sets. The node only applies the query
to its local database. If the local result set is not empty, the node directly
contacts the agent with an INVITE message to solicit a RECEIVE mes-
sage. Interaction then proceeds with the normal RECEIVE-SEND-CLOSE
pattern, either in a synchronous or asynchronous manner (see above). An
INVITE message also contains the number R of results currently available for
immediate non-blocking delivery (nonBlockingResultsAvailable). R must
be greater than or equal to zero. The message also contains the current
estimate Q of the remaining total result set size, irrespective of blocking
(estimatedResultsAvailable). Q must be greater than zero.

A peer may periodically discover other peers and announce its presence. Peer
discovery uses a QUERY that selects all tuples with peer service descriptions.
For presence announcement, a peer additionally includes its service description
as optional QUERY data. Explicit PING/PONG messages [19] are unnecessary.
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Clearly a RECEIVE request may cause cascading RECEIVEs through the
nodes of the P2P topology, followed by cascading SEND responses backwards. In
the worst case every RECEIVE cascades through a large number of node hops,
incurring prohibitive latencies. This highlights the importance of (appropriately
sized) batched delivery, which greatly reduces the number of hops incurred by a
single RECEIVE. Also, note that the I/O of a node need not be driven strictly by
client demand. For example, in an attempt to reduce latency, a node accepting
a QUERY may already prefetch query results from its neighbors even though it
has not yet seen the corresponding RECEIVE request from its client.

State Transitions. A node maintains a state table. For each query at least the
transaction identifier, abort timeout, loop timeout and an open/closed state flag
are kept. An example state table reads as follows:

Transaction Identifier Abort Timeout Loop Timeout State

100 20 30 Closed

200 50 60 Open

A query is known to a node if the state table already holds a transaction
identifier equal to the transaction identifier of the query. Otherwise, it is said to
be unknown. A known query can be in two states: open or closed. Let us discuss
the state transitions from unknown to open to closed and back to unknown state
(also summarized in Figure 1).

– Open. When an unknown query arrives with a QUERY message, it moves
into open state. When a query moves into open state, it becomes known and
is forwarded to the neighbors obtained from neighbor selection.

– Closed. A query moves from open into closed state when its abort timeout
has been reached, or if the result set is exhausted by the final SEND, or
if a client issues a CLOSE to indicate that it is no longer interested in the
(remainder of the) result set, or if one of several errors occur. Under direct
response, a query to a non-agent node also moves from open into closed state
if the query produces no local results, or if it does produce local query results
but the INVITE request is not accepted by the agent.
In any case, when a query moves into closed state, a CLOSE request is
asynchronously forwarded to all dependents in order to inform them as well.
A node depends on a set of other nodes (dependents) that are involved in
result set delivery. Under Routed Response, the dependants are the nodes
obtained from neighbor selection. Under Direct Response, the dependents
of an agent are the nodes from which the agent has accepted an INVITE
message, whereas all other nodes have no dependents.

– Unknown. A query moves from closed state into unknown state when its
loop timeout has been reached. In other words, the query is deleted from the
state table.
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– Message Acceptance and Rejection. A QUERY request is accepted if
the query is unknown. If an already known QUERY arrives, this usually
indicates loop detection [2, 13]. The message is rejected with an error (e.g.
”transaction identifier already in use”). When a message other than QUERY
arrives that has an unknown transaction identifier, it is rejected with an
error (e.g. ”transaction identifier unknown”). RECEIVE, SEND, CLOSE
and INVITE messages are accepted for a query in open state. No message
for a query in closed state is accepted; the response to a message is always
an error (e.g. ”transaction identifier already closed”).

1. CLOSE received
2. SEND exhausts result set

3. INVITE not accepted (Direct Response non empty resultset)
4. True (Direct Response empty local result set)

5. Various errors
6. Abort timeout

OPEN

UNKNOWN

Loop timeout

Trigger action:
Forward QUERY
to neighbors

CLOSED

QUERY

Trigger action:
Forward CLOSE
to dependents

Fig. 1. Node State Transitions.

3 Concrete Messaging Model

BEEP Messaging Model. The BEEP application level network protocol frame-
work [16, 17] is an IETF standard designed for connection-oriented (ordered, reli-
able, congestion sensitive), message-oriented (loosely coupled, structured data),
asynchronous (peer-to-peer, allowing client-server) communications. The mes-
saging model of the framework defines one request message class (MSG) and
four response messages classes (RPY, ERR, ANS, NULL). Discrete messages
belong to well-defined message exchange patterns. For example, the pattern of
synchronous exchanges (one-to-one, pull) is supported as well as the pattern of
asynchronous exchanges (one-to-many, push). The response to a MSG message
may be an error (ERR), a reply (RPY) or a sequence of zero or more answers
(ANS), followed by a null terminator message (NULL). The exchange patterns
are summarized as follows:

MSG --> RPY | (ANS [0..N], NULL) | ERR

PDP Messaging Model. In a straightforward manner, the abstract PDP mes-
saging model is now mapped down to the concrete BEEP messaging model. The



8

BEEP framework explicitly expects each message class to be extended by ap-
plications as necessary. Accordingly, the messages QUERY, RECEIVE, SEND,
CLOSE, INVITE are refined, yielding three request MSG types (MSG QUERY,
MSG RECEIVE, MSG INVITE), two reply message types (RPY SEND, RPY
OK), one answer message type (ANS SEND), and the ERR error type. The
RPY OK and ERR message type are introduced because any realistic messag-
ing model must deal with acknowledgments and errors. The following message
exchanges are permitted:

MSG QUERY --> RPY OK | ERR

MSG RECEIVE --> RPY SEND | (ANS SEND [0:N], NULL) | ERR

MSG INVITE --> RPY OK | ERR

MSG CLOSE --> RPY OK | ERR

The messaging model is exemplified by the following corresponding message
flows from client to server (“-->”) and back (“<--”):

Routed Synchr.
Response

Routed Asynchr.
Response

Direct Synchr.
Response

Direct Asynchr.
Response

--> MSG QUERY

<-- RPY OK

--> MSG RECEIVE

<-- RPY SEND

--> MSG RECEIVE

<-- RPY SEND

--> MSG CLOSE

<-- RPY OK

--> MSG QUERY

<-- RPY OK

--> MSG RECEIVE

<-- ANS SEND

<-- ANS SEND

<-- NULL

--> MSG CLOSE

<-- RPY OK

--> MSG QUERY

<-- RPY OK

<-- MSG INVITE

--> RPY OK

--> MSG RECEIVE

<-- RPY SEND

--> MSG RECEIVE

<-- RPY SEND

--> MSG CLOSE

<-- RPY OK

--> MSG QUERY

<-- RPY OK

<-- MSG INVITE

--> RPY OK

--> MSG RECEIVE

<-- ANS SEND

<-- ANS SEND

<-- NULL

--> MSG CLOSE

<-- RPY OK

Concrete PDP Message Representations. Message types and their parameters
can be mapped to multiple representations. For simplicity and flexibility, PDP
uses straightforward XML [20] representations, as depicted in Figure 2. Without
loss of generality, example query expressions (e.g. user query, merge query and
neighbor selection query) are given in the XQuery language [10], as detailed in
[12]. Other query languages such as XPath, SQL [11] or LDAP [21] or subscrip-
tion interest statements could also be used. Indeed, the messages and network
interactions required to support publish-subscribe or event trigger systems do
not differ at all from the ones presented in this paper.

4 Communication Model and Network Protocol

BEEP Communication Model. In this subsection, the communications between
two peers (e.g. originator and agent node, or node and another node) are de-
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<MSG_QUERY transactionID = "12345">

<query>

<userquery> RETURN /tupleset/tuple </userquery>

<mergequery unionizer="UNION"> RETURN /tupleset/tuple </mergequery>

</query>

<scope loopTimeout = "2000000000000" abortTimeout = "1000000000000"

logicalRadius = "7" physicalRadius = "4"

maxResults = "100" maxResultsBytes = "100000">

<neighborSelectionQuery> <!-- implements broadcasting -->

RETURN /tupleset/tuple[@type="service"

AND content/service/interface[@type="Consumer-1.0"]

AND content/service/interface[@type="XQuery-1.0"]]

</neighborSelectionQuery>

</scope>

<options>

<responseMode> routed </responseMode>

<originator> fred@example.com </originator>

</options>

</MSG_QUERY>

<MSG_RECEIVE transactionID = "12345">

<mode minResults = "1" maxResults = "10"> synchronous </mode>

</MSG_RECEIVE>

<RPY_SEND transactionID = "12345">

<data nonBlockingResultsAvailable = "-1" estimatedResultsAvailable = "-1">

<tupleset TS4="100">

<tuple link="http://sched.infn.it:8080/pub/getServiceDescription"

type="service" ctx="child" TS1="20" TC="25" TS2="30" TS3="40">

<content>

<service> service description B goes here </service>

</content>

</tuple>

... more tuples can go here ...

</tupleset>

</data>

</RPY_SEND>

<ANS_SEND transactionID = "12345">

structure is identical to RPY_SEND (see above) ...

</ANS_SEND>

<MSG_INVITE transactionID = "12345">

<avail nonBlockingResultsAvailable="50" estimatedResultsAvailable="100"/>

</MSG_INVITE>

<MSG_CLOSE transactionID = "12345" code="555"> maximum idle time exceeded

</MSG_CLOSE>

<RPY_OK transactionID = "12345"/>

<ERR transactionID = "12345" code="550"> transaction identifier unknown </ERR>

Fig. 2. Concrete Messages.
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scribed by the BEEP communication model, which well fits the requirements of
our (non-trivial) messaging model. The model has the following properties:

– Session, Channel, Message and Frame. Two peers establish a session
for communication. Within a session, one or more concurrent channels can
be established. A channel carries zero or more messages. A message can
have arbitrary length and content. A message is segmented into one or more
frames of variable length. A session is established by an initiator for commu-
nication with a listener. Within a session, the peer that awaits new channels
is acting in the server role, and the other peer, which establishes a channel
to the server, is acting in the client role. In P2P style, both initiator and
listener may (but need not) act as client and server at the same time.

– Intra-channel. Within a channel, all messages are processed in serial or-
der. The server must generate responses in the same order as corresponding
request messages are received. One or more request messages may be issued
without waiting to receive the corresponding responses. That is, a channel
provides pipelining. To this end, each request message carries an integer iden-
tifier that is unique within the channel. Responses to the message carry the
same identifier.

– Inter-channel. Channels are isolated from each other, and therefore han-
dle asynchrony and multiplexing. A channel cannot “see” or interfere with
messages from other channels. There are no constraints on the processing
order for different channels. In other words, inter-channel messages may be
unordered.

– Flow control. In all likelihood, the concurrent channels of a session are car-
ried over the same physical network cable. Consequently, flow control policy
issues arise: If more than one channel offers a frame to send, which frame
should be chosen? What is a good size for a frame? A peer may implement
any policy it sees fit. For example, it may attempt to prevent starvation and
encourage fairness. A slow channel should not be able to monopolize the ses-
sion. Large messages may be segmented into multiple frames, and different
channels may be served in round-robin fashion or according to priorities.

PDP Communication Model. We now describe how PDP uses the BEEP com-
munication model for its purposes. Because of the non-trivial PDP transaction
model, we use one channel per distinct transaction to isolate communication
referring to different queries and to ensure that messages of a transaction are
processed in serial order. This also provides for resource consumption and flow
control on a per query basis. The concepts of session and channel can be mapped
to concrete physical entities in several ways:

– Session. There are two options: one session per originator, or one session
per initiator (neighbor node). Under the former option, a new session be-
tween two peers is established whenever a query from a previously unknown
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originator is accepted. The session is shared by all queries from the given
originator. This option does not scale well in the presence of many concurrent
originators. In contrast, under the latter option, a new session is established
whenever a new node publishes itself as neighbor (more lazy: when the first
query exchange with a neighbor happens). Irrespective of how many orig-
inators issue queries, the session persists until a node leaves the network.
Since neighbors do not join and leave very frequently, this option involves
less latency because session establishment occurs less often.

– Channel. As has been noted, there exists one channel per transaction
(query). There are two options to map TCP connections: one TCP con-
nection per channel (TCP multiplexing, TM ) and one TCP connection per
session (application multiplexing, AM ).
TM is easy to implement because multiplexing is directly supported by the
TCP stack, which natively handles multiple concurrent TCP connections.
An application need not bother how to implement multiplexing and flow
control, but it also has few means to control it. For simplicity, almost all
network protocols use TM. Under AM, all channels of a session share a
single TCP connection. Typically, each channel has an associated memory
buffer. AM is much more complex because multiplexing must be supported
on top of the TCP stack, at the application level. Note, however, that the
complexities involved are well taken care of by existing commodity software
frameworks such as beepcore [22]. TM has the distinct disadvantage of be-
ing much less efficient in the presence of high frequency channel creation.
With new queries (channels) arriving at high frequency, TM encounters seri-
ous latency limitations due to the very expensive nature of secure (and even
insecure) TCP connection setup. Even if TCP connections are kept alive,
pooled and reused, at least N*neighbors TCP connections are needed un-
der broadcast to handle N concurrent queries. While this solution may be
perfectly adequate for small special-purpose networks, it clearly does not
scale well to the stringent demands of a ubiquitous Internet infrastructure
such as service discovery. This is precisely the demanding scenario AM is
designed for: Channel establishment only requires a single message exchange
over an already existing TCP connection. If channels are pooled and reused,
channel establishment is a null operation and does not involve any network
communication.

It appears unnecessary and inefficient to setup up a new session for each orig-
inator. Hence, PDP uses one session per initiator (neighbor node). For simplicity
and easy authorization, PDP actually uses two sessions per initiator (neighbor
node). One session is used for traffic related to incoming queries (queries posed
to the node), the other for traffic related to outgoing queries (queries the node
poses to another node). A node with N neighbors has N incoming and N out-
going sessions. In a successful P2P network, queries do indeed arrive at high
frequencies. Session establishment may be heavyweight, but channel establish-
ment must be lightweight. Hence, application multiplexing is chosen. A node
with N neighbors has N incoming and N outgoing TCP connections.
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BEEP Network Protocol. The BEEP network protoccol uses channels for asyn-
chrony (handling independent exchanges). Its transport mapping to TCP uses
application multiplexing (one TCP connection per session) with sliding windows
[17]. Each channel has a sliding window that indicates the number of payload
octets that a peer may transmit before receiving further permission to transmit.
MIME [14] with a default of text/xml is used for encoding (representing mes-
sages). Octet counting with trailers is used for framing (delimiting messages).
SASL [23] and/or TLS/SSL [24] are used for authentication (verifying user iden-
tities) and privacy (protecting against third-party interception). 3-digit and lo-
calized textual diagnostics are used for reporting (conveying status information
such as errors). We note that BEEP can be mapped to any reliable transport
layer (TCP is merely the default).

PDP Network Protocol. Any network protocol must deal with a set of common
problems. The BEEP framework was introduced to avoid the need to reinvent
solutions to common problems. We propose to adopt the framework because
it integrates existing best-of-breed standards. PDP encodes message types and
their parameters with the straightforward XML representations given in Sec-
tion 3, using the MIME type text/xml, which is the default in BEEP. For Grid
applications, PDP uses TLS/SSL within the context of the Grid Security Infras-
tructure (GSI) [25].

5 Related Work

RDBMS. The network protocols of Relational Database Management Systems
are designed with a tight focus on a single node architecture and response model.
For maximum efficiency, communication is tightly coupled, for example with low
overhead Inter Process Communication (IPC) mechanisms carried over more ef-
ficient layers than TCP. Like our approach, RDBMS protocols also are stateful
and allow for low latency, pipelining, early and/or partial result set retrieval
due to synchronous pull, and result set delivery in one or more variable sized
batches. They provide very strong functionality to provide for resource consump-
tion and flow control on a per query and/or per user basis. Low-level RDBMS
interfaces such as Oracle’s OCI [26] allow for application multiplexing. High-
level access APIs such as JDBC [27] do not provide access to such facilities;
they use less scalable TCP connection pooling instead. RDBMS protocols are
closed and proprietary (except for open source products), and hence unsuitable
for Internet-level interoperability and extensibility.

LDAP and MDS. The Lightweight Directory Access Protocol (LDAP) [21] al-
lows for multi-level hierarchical topologies as well as normal and referral response
modes. It does not support arbitrary topologies and Direct Response mode. The
Metacomputing Directory Service (MDS) [28, 29] additionally supports routed
response mode but otherwise has the same properties as LDAP. Like our ap-
proach, both protocols are stateful as well as connection and message-oriented.
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They do not support synchronous pull, and result set delivery in one or more
variable sized batches. Synchronous paging behavior has been proposed [30],
but this is still inefficient, because each response message still contains a sin-
gle entry only. LDAP and MDS do support asynchronous push. They do not
provide for resource consumption and flow control on a per query basis. They
lack a concept that concentrates and serializes all messages related to a query,
like a BEEP channel. LDAP has a notion of application multiplexing that is not
equivalent to ours. The fact that messages may be unordered is dictated by the
LDAP network protocol. The BEEP network protocol guarantees for ordered
message delivery. If LDAP were used for PDP messaging, the parameters Q and
R of a SEND message would be meaningless. Likewise, the server response for a
CLOSE request would be allowed to “overtake” the SEND responses for prior
RECEIVE requests, which violates pipelining semantics. Like BEEP, LDAP is
an IETF standard.

Gnutella and Freenet. Gnutella [19] and Freenet [31] support queries in arbi-
trary graph topologies but only a single response mode. Like our approach, their
protocols are stateful as well as connection and message-oriented. They do not
support synchronous pull but they do support asynchronous push with one or
more variable sized batches. Like LDAP and MDS, they do not provide for re-
source consumption and flow control on a per query basis. However, they do have
a notion of application multiplexing that is equivalent to ours for the purpose
of result set retrieval. Their protocol specifications are not closed and propri-
etary, but they are ad-hoc specifications without any relation to an open IETF
standard and its implied quality in terms of interoperability and extensibility.

6 Conclusions

In this paper, we develop a messaging, communication and network protocol
model, collectively termed Peer Database Protocol (PDP). PDP supports P2P
database queries for a wide range of database architectures and response models
such that the stringent demands of ubiquitous Internet infrastructures in terms
of scalability, efficiency, interoperability, extensibility and reliability can be met.

PDP has a number of key properties. It is applicable to any node topology
(e.g. star, ring, tree, graph) and to multiple P2P response modes. To support
loosely coupled autonomous Internet infrastructures, the model is connection-
oriented (ordered, reliable, congestion sensitive) and message-oriented (loosely
coupled, operating on structured data). For efficiency, it is stateful at the protocol
level, with a transaction consisting of one or more discrete message exchanges
related to the same query. It allows for low latency, pipelining, early and/or
partial result set retrieval due to synchronous pull, and result set delivery in
one or more variable sized batches. It is efficient, due to asynchronous push
with delivery of multiple results per batch. It provides for resource consumption
and flow control on a per query basis, due to the use of a distinct channel per
transaction. It is scalable, due to application multiplexing, which allows for very
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high query concurrency and very low latency, even in the presence of secure TCP
connections. To encourage interoperability and extensibility it is fully based on
Internet Engineering Task Force (IETF) standards.

These key properties distinguish our approach from related work, which in-
dividually addresses some, but not all of the above issues. We are not aware
of related work that proposes a uniform messaging model that is applicable
to any node topology and at the same time to multiple P2P response modes.
Some related work does not apply to loosely coupled autonomous database nodes
(RDBMS). Some protocols are not stateful at the protocol level (HTTP based
mechanisms). Some do not support synchronous pull (LDAP, MDS, Gnutella,
Freenet) and result set delivery in one or more variable sized batches (LDAP,
MDS, HTTP based mechanisms). Some do not support asynchronous push with
delivery of multiple results per batch (LDAP, MDS, HTTP based mechanisms).
Some do not provide for resource consumption and flow control on a per query
basis (LDAP, MDS, Gnutella, Freenet, HTTP based mechanisms). Some lack
application multiplexing for scalable query concurrency (some RDBMS drivers,
HTTP based mechanisms, LDAP, MDS). Some do not encourage interoperability
and extensibility based on open IETF standards (RDBMS, Gnutella, Freenet).

Interesting directions for future research include investigating the use of
SOAP [32] as a high-level tool for PDP messaging. Most commonly, HTTP 1.1
[33] is used as SOAP transport. However, SOAP is transport protocol indepen-
dent. For strongly increased efficiency and low latency, SOAP should be carried
over BEEP. See [34] for an IETF draft specifying a straightforward SOAP/BEEP
binding.
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